# NCP4302 Increasing a Notebook Adaptor's Efficiency using Synchronous Rectification



Prepared by: Terry Allinder ON Semiconductor

## Introduction

The NCP4302 is a full featured controller and driver that provide all the control and protection functions necessary for implementing a synchronous rectifier operation in a flyback converter. With the use of the NCP4302, the space conscious flyback applications such as Adaptors, chargers, and set top boxes can achieve significant efficiency improvements at minimal extra cost. In addition to the synchronous rectifier control, the IC incorporates an accurate TL431 type shunt regulator, current monitoring circuit, and optocoupler driver to provide a single IC secondary solution. The NCP4302 works with any type of flyback topology (continuous, Quasi-resonant, or discontinuous mode) – providing a high level of versatility.

## **Key Features**

Supply voltage up to 28 Vdc, allows the  $V_{CC}$  input to be connected directly to the output of a Notebook Adaptor.

**True secondary side** current sensing with a low propagation delay, from the time, the secondary side transformer current is sensed to the time the Driver output is enabled.

High current drive output (2.5 A), provides improved efficiency with an internal gate clamp voltage of 13.5 V to prevent larger excursion of gate voltage when  $V_{CC}$  is operating from a 28 Vdc output.

The NCP4302 is designed to operate in Discontinuous Conduction, Continuous Conduction, or Quasi-resonant mode.

**Externally programmable**  $t_{on}$  and  $t_{off}$  delays prevent the driver output from falsely turning on due to ringing on the SYNC/CS input, or turning off. When the system is operating under light load conditions the transformer secondary voltage can ring below ground when there is no current flowing.

**Internal TL431 Shunt Regulator** which is used to provide power supply output voltage regulation.

## **General Description**

The demonstration board for the NCP4302 is a 90 W Notebook Adaptor operating from the Universal input line. The off-line converter is implemented using the NCP1230 in a flyback topology operating in Discontinuous Conduction Mode. The details for this design can be found in applications note AND8154/D.

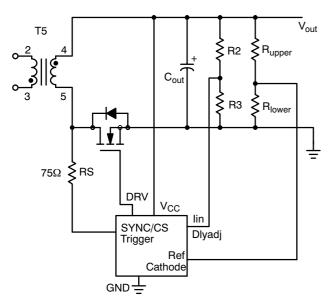
## **Design Specification**

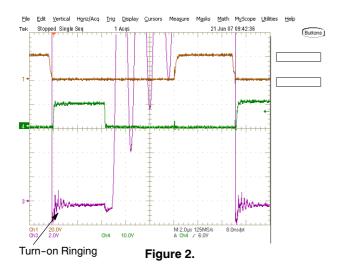
This Demo Board is configured as an Offline Notebook Adaptor power supply. The input stage operates off of the universal input line, 85–265 Vac, 50–60 Hz. The output of the Notebook Adaptor is 19.0 V, producing 90 W of output power. Table 1 shows the complete design specification.

The Offline Converter is fully self contained and includes a bias supply that operates off of the Auxiliary winding of the transformer. The design is a re-use from the AND8154/D, refer to this application note for the design details. The Demo Board was modified to add synchronous rectification to the secondary to improve the efficiency of the power supply. Refer to Figure 1 for the circuit details.

#### **Table 1. Demo Board Specifications**

| Parameter                                        | Symbol | Min  | Max  |  |  |  |  |  |
|--------------------------------------------------|--------|------|------|--|--|--|--|--|
| Input Voltage                                    | Vac    | 85   | 265  |  |  |  |  |  |
| Frequency                                        | Hz     | 47   | 63   |  |  |  |  |  |
| Output Voltage                                   | Vdc    | 18.6 | 19.4 |  |  |  |  |  |
| Output current                                   | Adc    | -    | 4.74 |  |  |  |  |  |
| Output Power                                     | W      | -    | 90   |  |  |  |  |  |
| Efficiency                                       | %      | 86   | -    |  |  |  |  |  |
| Stand-By Power<br>V <sub>in</sub> 230 Vac        | mW     | -    | 150  |  |  |  |  |  |
| Input power, during an<br>output short circuited | mW     |      | 100  |  |  |  |  |  |
| Input power with a<br>0.5 W Load                 | mW     | -    | 0.8  |  |  |  |  |  |





Figure 1. Simplified NCP4302 Implementation Implementing the NCP4302

The SYNC/CS input is connected to the Drain of the Synchronous Rectification MOSFET through a 75  $\Omega$  resistor, RS. No other components are necessary to implement true secondary side current sensing.

The trigger input is used if the power supply will operate in Continuous Conduction Mode (CCM). If the power supply will only be operates in Discontinuous Conduction Mode (DCM) the pin should be connected to ground.

In applications where the power supply is operating in CCM, a timing signal which precedes the primary side Flyback MOSFET turning-on needs to be sent to the Trigger input of the NCP4302. The trigger input will turn-off the NCP4302 driver output disabling the Synchronous Rectification MOSFET. This prevents the primary and the secondary side MOSFETs from conducting simultaneously. Figure 1 show how one possible circuit can be implemented.

 $D_{LAYADJ}$  – The  $D_{LAYADJ}$  pin allows the user to set the minimum  $t_{on}$  and  $t_{off}$  time.



#### Synchronous Rectifier Drain Voltage

As current starts to flow in the secondary of the flyback transformer, the parasitic inductance (Printed Wiring Board traces, or component lead)causes the voltage at the SYNC/CS input to ring above ground (as shown Figure 2). This ringing, if not ignored, may cause the controller drive output to turn-off. To eliminate this problem the NCP4302 has a programmable t<sub>on</sub> time which blanks the secondary voltage ringing by adding a minimum controller drive on time.

Set up: Determine the minimum  $t_{on}$  delay time by measuring the period in which the high peak current in the secondary causes the voltage at the Drain of the SYNC FET to ring above ground.

The ringing period for this application is approximately 300 ns. The t<sub>on</sub> delay is selected to be 500 ns to ensure under all conditions that the turn on ringing would be ignored. This is measured a full load and minimum input ac line voltage.

The second step is to determine the required minimum t<sub>off</sub> delay time. This normally occurs under light load conditions, refer to Figure 1. Under light load conditions the transformer secondary voltage rings below ground when no current flows on the secondary side. This ringing has to be ignored to prevent turning on the synchronous rectifier drive output.

For this application the  $t_{off}$  delay is selected to be 1 µs, this is measured under light load and high line conditions.

Once both boundary conditions have been determined, the delays are set using an external resistive divider using equation 1.

A proprietary delay circuit allows for independent control over both delays times.

$$I_{\text{in DLYON}} = \frac{\left(V_{\text{out}} \frac{R3}{R2+R3} - 0.7\right)}{R_{\text{th}}} \qquad (\text{eq. 1})$$

Where Rth is the Thevenin equivalent resistance, it is calculated using equation (2)

$$Rth = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}$$
(eq. 2)  
$$t_{ONdelay} = 10 \text{ pF } \frac{4 \text{ V}}{\text{I}_{in}}$$

The  $t_{off}$  delay is calculated using equation (3):

$$I_{\text{in DLYOFF}} = \frac{\left(V_{\text{out } \overline{\text{R3}}} - 0.7\right)}{100k}$$

$$t_{\text{OFFdelay}} = 10 \text{ pF} \frac{3.35 \text{ V}}{l_{\text{in}}}$$
(eq. 3)

Alternatively, a single resistor between the Reference pin of the NCP4302 and the Dlyadj pin can be used. This results in a reduced adjustment range for  $t_{on}$  and  $t_{off}$ . For this application a single 43 k $\Omega$  resistor could have been used. If a single 43 k $\Omega$  resistor were used, the ton delay would have been 930 ns and the toff delay would have been 2.17 µs.

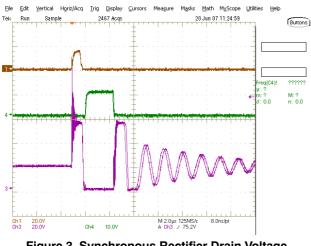



Figure 3. Synchronous Rectifier Drain Voltage Waveform during Turn-off

GATE – The NCP4302 Gate output has a high source and sink current (2.5 Apk) drive capability. This results in a fast turn-on and turn-off of the synchronous rectifier. Having a high gate drive current enables fast turn-on when SYNC/CS signal is received (to minimize body diode conduction at the peak of the current waveform) and fast turn-off when zero current or a Trig signals is received (to prevent current reversal or cross conduction).

 $V_{CC}$  – The maximum supply voltage for the NCP4302 is 28 Vdc. In most application the  $V_{CC}$  pin can be directly connected to the output of the power supply. It is recommended that the  $V_{CC}$  pin should be decoupled with at least a 0.1  $\mu F$  capacitor for noise immunity.

Internal to the NCP4302 is a TL431 type shunt regulator.

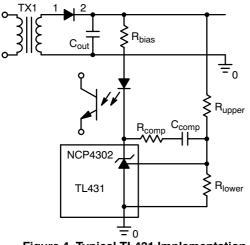



Figure 4. Typical TL431 Implementation

When the TL431 is being used to regulate the output of a power supply it is typically configured as shown in Figure 4. The output from the power supply is sensed and divided down with a resistive divider made up of  $R_{upper}$  and  $R_{lower}$ . The center point of the divider is connected to the reference pin of the NCP4302. The divider ratio scales down the output voltage to match the reference voltage. The NCP4302A has a 2.5 V reference and the NCP4302B has a 1.25 V reference.

$$V_{\text{REF}} = V_{\text{out}} \frac{R_{\text{LOWER}}}{R_{\text{LOWER}} + R_{\text{UPPER}}}$$

#### Output

One of the disadvantages of a Flyback converter operating in the Discontinuous mode is the high peak current in the secondary which can significantly reduce the power supply efficiency.

The peak current is determined by the transformer primary inductance as given by equation 4. The primary inductance is 220  $\mu$ H. In this application the transformer primary peak current is:

$$I_{pk} = \sqrt{\frac{P_{out} \cdot 2}{L_p \cdot freq}}$$
 (eq. 4)

Where:

 $P_{out} = 90 W$   $Lp = 220 \mu H$  Freq = 65 kHzN = 6.77

F

$$I_{pk} = \sqrt{\frac{90 \cdot 2}{220 \ \mu H \cdot 65 \ kHz}} = 3.55 \ A$$

The transformer secondary peak current is calculated by using equation 5.

$$I_{SEC_{PK}} = I_{PRIM_{PK}} \cdot n$$
 (eq. 5)  
 $I_{SEC_{PK}} = 3.55 \cdot 6.77 = 24 \text{ Apk}$ 

Where: n is the transformer turns ratio

The losses in the secondary are calculated by using equation 6.

$$P_{\text{Tsecondary}} = P_{\text{ON}} + P_{\text{SW}} + P_{\text{DIODE}}$$
 (eq. 6)

The Synchronous Rectification MOSFET is an IRFB4410 with a  $V_{DSS}$  of 100 V, an  $R_{DS(on)}$  of 10 n $\Omega$  (typical), maximum current of 96 A, and an output capacitance of 420 pF ( $C_{OSS}$ ).

$$l_{out} = \frac{l_{pk}}{2} (1 - D_{on}) \qquad (eq. 7)$$

$$I_{out} = \frac{24 \text{ Apk}}{2} (1 - 0.4) = 7.2 \text{ A}$$
$$I_{rms} = I_{pk} \sqrt{\frac{1 - D_{on}}{3}} \qquad (eq. 8)$$

Combining eq. 7 and eq. 8

$$I_{rms}^{2} = \frac{4 \cdot I_{out}^{2}}{3(1 - D_{on})}$$
 (eq. 9)

$$P_{ON} = \frac{4 \cdot I_{out}^2}{3(1 - D_{on})} \cdot R_{DS(on)}$$
(eq. 10)

$$\mathsf{P}_{\mathsf{ON}} = \frac{4 \cdot 7.2^2}{3(1 - 0.2)} \cdot 10 \text{ m}\Omega = 1.15 \text{ W}$$

$$P_{SW} = \frac{1}{2} \cdot C_{OSS} \cdot V_S^2 \cdot \text{freq} \qquad (eq. 11)$$
$$P_{SW} = \frac{1}{2} \cdot 420 \text{ pF} \cdot 38 \text{ V}^2 \cdot 65 \text{ kHz} = 0.02 \text{ W}$$

Where:

$$V_{S} = \frac{Vdc}{n} + V_{out}$$
  
 $V_{S} = \frac{127 V}{6.77} + 19.0 V = 38 V$ 

 $Vdc = 90 \cdot \sqrt{2} = 127 Vdc$  $V_{out} 19.0 V$ 

 $P_{DIODE} = V_{D} \cdot I_{D} \cdot tp1 \qquad (eq. 12)$ 

$$P_{DIODF} = 1.3 V \cdot 24 \cdot 100 \text{ ns} = 1.56 \,\mu\text{W}$$

Where: tp1 is the propagation delay from the time current is flowing in the secondary of the transformer, to the time the synchronous MOSFET is turned-on shorting out the MOSFETs internal body diode.

 $P_{TSECONDARY}\,=\,1.15~W\,+\,0.02~W\,+\,1.56~\mu W\,=\,1.17~W$ 

If this is compared to the calculated losses with a conventional Schottky rectification diode on the output:

 $\mathsf{P}_{\mathsf{SECONDARY}} = \mathsf{I}_{\mathsf{OUT}\ \mathsf{dc}} \cdot \mathsf{V}_{\mathsf{f}} = 4.77\ \mathsf{Adc} \cdot \mathsf{0.7}\ \mathsf{V} = 3.34\ \mathsf{W}$ 

Based on the calculations we should expect to see a 2.18 W improvement in the overall systems efficiency.

# **Continuous Conduction Mode**

When using Synchronous Rectification and operating in Continuous Conduction Mode (CCM) the current in the transformer secondary doesn't fall to zero prior to turning on the primary side MOSFET. As a result, cross conduction (having the primary side MOSFET and secondary side Synchronous Rectification MOSFET conducting current at the same time) will occur and there will be a loss in efficiency.

To avoid cross conduction, a signal which leads the primary side FET turning-on should be applied to the TRIG input of the NCP4302 (refer to Figure 5 below for timing details). The TRIG input directly controls the DRV logic Flip-Flop inside of the NCP4302. When a 3 V (typical) signal with a pulse width greater than 75 ns is applied to the TRIG pin, the DRV output logic is Reset within 25 ns (typical) and the Sync FET is turned-off. By correctly using the TRIG signal, cross conduction will be eliminated and there will be an improvement in the efficiency while operating in CCM.

Figure 5 also shows one possible solution for generating a TRIG pulse. The circuit was built and tested in a 90 W Notebook Adaptor Demo Board and the results as shown in Figure 6 below.

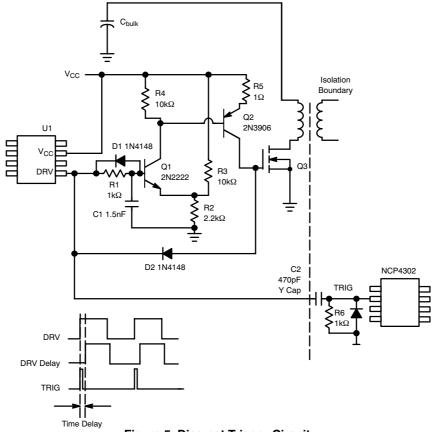



Figure 5. Discreet Trigger Circuit

For the circuit in Figure 5, when the output DRV signal from U1 is applied to the input of the differentiator circuit R6 (1 k $\Omega$ ) and C2 (C2 is a 470 pF "Y" capacitor) a pulse is generated on the TRIG pin of the NCP4302. At the same time the U1 DRV signal is delayed by R1 and C1, this sets the delay time. When C1 has charges to:

$$V_{Q1Base} = \frac{R2}{R2 + R3} V_{CC} + 0.7 V$$
  
= 15 V  $\frac{2.2 \text{ k}\Omega}{2.2 \text{ k}\Omega + 10 \text{ k}\Xi} + 0.7 \text{ V} = 3.4 \text{ V}$ 

 $V_{CC} = 15 V$ 

Q1 is forward biased which turns on transistor Q2 and provides the gate drive signal to the MOSFET Q3.

When Q1 is forward biased the voltage on VQ1 emitter ramps from 2.7 V to:

$$V_{CC} - VCE_{SATQ1} - VR4 \approx 13 V_{CC}$$

Where: VR4 is 1 V

Resistor R4 sets up the base drive for transistor Q2, R5 is the MOSFET (Q3) gate resistor; this is typically a value of 1  $\Omega$  to 10  $\Omega$ . Diode D2 is used to pull the charge out of MOSFET Q3 for a fast MOSFET turn-off time.

Figure X1 shows the resulting waveforms of the discreet circuit in the 90 W Demo Board. The delay from the U1 DRV output to the TRIG input is around 800 ns. The results show that this turns-off the NCP4302 Sync DRV output 800 ns prior to the U1 DRV turning on the MOSFET Q3.

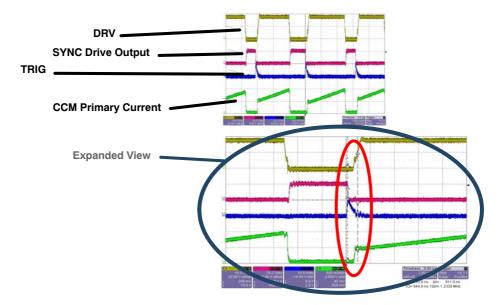



Figure 6. Discreet Trigger Circuit Waveforms

## **Demo Board**

The NCP4302 Demo Board has both Synchronous Rectification (a MOSFET) and a conventional Schottky diode so an easy comparison of the advantages of Synchronous Rectification can be made. The Schottky diode is in parallel with the Synchronous MOSFET, when jumper SW1 is installed, the NCP4302 is disabled and the Schottky rectifier is in the circuit. When jumper SW1 is removed the NCP4302 is enabled and will short out the Schottky diode when current is sensed in the transformer secondary.

If you refer to Table 2 and 3 they show the efficiency data with and without synchronous rectification. We can see that at full load and 90 Vac input and full load, with the Synchronous MOSFET enabled that the input power is 102.82 W and with the Synchronous MOSFET disabled (current flowing through the MBR20H100 Schottky diode) the input power is 104.64 W, or a 1.82 W reduction in power loss.

When the ac input line is raised to 230 Vac, the input power with the Synchronous MOSFET enabled is 101.61 W and with the Synchronous MOSFET disabled the input power is 104.24 W, this is a power savings of 1.82 W. This is very close to our calculated losses in the analysis above.

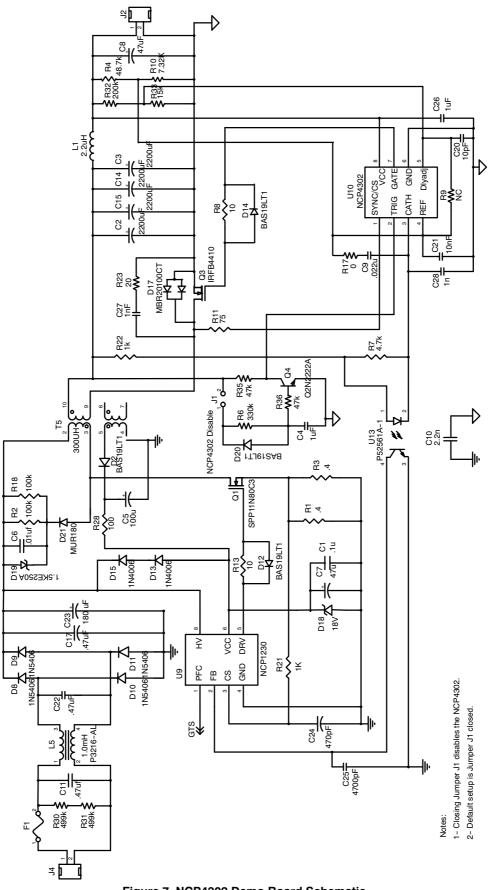
#### Synchronous Rectification MOSFET Snubber

A snubber was added across the Sync MOSFET to reduce the ringing and voltage stress during the time when the Sync FET is turning-off. A 20  $\Omega$  1/2 W resistor is used along with a 4700 pF 250 Vac capacitor.

#### Hold-off Circuit

During startup the Notebook Adaptor is operating in CCM. To avoid cross conduction of the primary side MOSFET, Q1, and the Synchronous MOSFET so they can't be on at the same time a hold-off circuit has been added. To avoid this either a trigger pulse leading Q1 turning on needs to be inputted to the NCP4302, or a Hold-Off circuit needs to be added.

For this application the simplest solution was to add a Hold-off circuit. The hold circuit pulls the trigger pin high disabling the NCP4302 drive output until the Notebook Adaptor output is up and operating in DCM. The circuit is made up of transistor Q4, R35, R6, R36, and C4. Refer to Figure 7.


When the Notebook Adaptor turns-on and the output capacitor is charged, (with J1 installed) capacitor C4 will charge through R6. During the time it is charging, transistor Q4 is reverse biases and the trigger input of the NCP4302 is pulled high. After C4 has charged above 0.7 V transistor Q4 will turn-on pulling the trigger input below 0.5 V enabling the NCP4302 drive output.

## **Demo Board Test Procedure**

Connect an ac power source to the J4 connector. Connect the dc load to the J2 connector. Place a Digital Voltage Meter

(DVM) directly across the J2 output terminals. Set the ac power source to 115 Vac, and turn on the ac source. The NCP1230 controller will turn-on and supply 19.0 Vdc to the load (refer to Table 1 for load regulation). Vary the load from 0 to 4.73 Adc and monitor the output voltage. Adjust the ac power source from 85–265 Vac and monitor the output voltage.

The Demo Board comes with the Jumper Header J1 installed; this will disable the NCP4302 driver output. To enable the Synchronous Rectifier, turn-off the ac input power and remove jumper J1, this will enable the NCP4302 driver output.





| Table 2. Demo Board Synchronous MOSFET Enabled ( | (Test Results with synchronous rectification) |
|--------------------------------------------------|-----------------------------------------------|
|--------------------------------------------------|-----------------------------------------------|

| V <sub>in</sub> (Vac) | Pin (W) | V <sub>out</sub> (Vdc) | l <sub>out</sub> (Adc) | P <sub>out</sub> (W) | Eff (%) | Pout % |
|-----------------------|---------|------------------------|------------------------|----------------------|---------|--------|
| 90                    | 25.9    | 18.94                  | 1.19                   | 22.54                | 87.02   | 25     |
| 90                    | 51.12   | 18.91                  | 2.37                   | 44.82                | 87.67   | 50     |
| 90                    | 76.8    | 18.87                  | 3.57                   | 67.37                | 87.72   | 75     |
| 90                    | 102.82  | 18.83                  | 4.77                   | 89.82                | 87.36   | 100    |
| 230                   | 26.36   | 18.87                  | 1.19                   | 22.46                | 85.19   | 25     |
| 230                   | 51.16   | 18.81                  | 2.37                   | 44.58                | 87.14   | 50     |
| 230                   | 76.73   | 18.77                  | 3.57                   | 67.01                | 87.33   | 75     |
| 230                   | 101.61  | 18.71                  | 4.772                  | 89.28                | 87.87   | 100    |

Table 3. Demo Board Synchronous MOSFET Disabled (Test Results without synchronous rectification)

|                       | MBF     | R20H100 Schottky D     |                        |                      |         |                    |
|-----------------------|---------|------------------------|------------------------|----------------------|---------|--------------------|
| V <sub>in</sub> (Vdc) | Pin (W) | V <sub>out</sub> (Vdc) | l <sub>out</sub> (Adc) | P <sub>out</sub> (W) | Eff (%) | P <sub>out</sub> % |
| 90                    | 27      | 18.83                  | 1.19                   | 22.41                | 82.99   | 25                 |
| 90                    | 52.3    | 18.73                  | 2.37                   | 44.39                | 84.88   | 50                 |
| 90                    | 77.5    | 18.66                  | 3.57                   | 66.62                | 85.96   | 75                 |
| 90                    | 104.64  | 18.65                  | 4.77                   | 88.96                | 85.02   | 100                |
| 230                   | 27.37   | 18.8                   | 1.19                   | 22.37                | 81.74   | 25                 |
| 230                   | 52.49   | 18.66                  | 2.37                   | 44.22                | 84.25   | 50                 |
| 230                   | 79.97   | 18.5                   | 3.57                   | 66.05                | 82.59   | 75                 |
| 230                   | 104.24  | 18.5                   | 4.77                   | 88.25                | 84.66   | 100                |

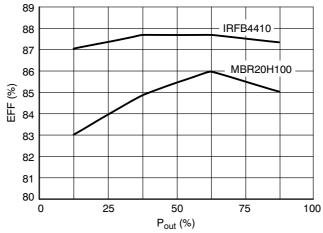



Figure 8. Synchronous Rectification (IRFB4410) vs. MBR20H100 Schottky Rectifier with 90 Vac Input

# Table 4. Bill of Materials for the NCP4302 Demo Board

|                                    |     | of Materials for the NCF              |                    |           | -                    |                     | [                           | r –                     |              |
|------------------------------------|-----|---------------------------------------|--------------------|-----------|----------------------|---------------------|-----------------------------|-------------------------|--------------|
| Designator                         | Qty | Description                           | Value              | Tolerance | Footprint            | Manufacturer        | Manufacturer Part<br>Number | Substitution<br>Allowed | Lead<br>Free |
| C1                                 | 1   | Ceramic chip capacitor                | 0.1 μF,<br>50 V    | 10%       | 1206                 | Vishay              | VJ01206Y104KXAA             | Yes                     | Yes          |
| C9                                 | 1   | Ceramic chip capacitor                | 0.022 μF,<br>50 V  | 10%       | 805                  | Vishay              | VJ0805Y223KXXA              | Yes                     | Yes          |
| C10                                | 1   | Capacitor, Y2 class                   | 2.2 nF,<br>500 Vac | 10%       | 10 mm X<br>5 mm      | RIFA                | ER610RJ4220M                | Yes                     | Yes          |
| C11,<br>C17,<br>C22                | 3   | Capaitor, X2 class                    | 0.47 μF,<br>300 V  | 10%       | 13.0 mm x<br>31.3 mm | Vishay              | F1772-447-3000              |                         | Yes          |
| C21                                | 1   | Ceramic cap                           | 0.01 μF,<br>50 V   | 10%       | 805                  | Vishay              | VJ0805Y103KXAA              | Yes                     | Yes          |
| C25                                | 1   | Ceramic cap                           | 4700 pF,<br>50 V   | 10%       | 1206                 | Vishay              | VJ01206Y472KXXA             |                         |              |
| C23                                | 1   | Cap. Aluminum                         | 180 μF,<br>450Vdc  | 20%       | 25 mm x<br>40 mm     | Panasonic           | ECO-S2GP181BA               |                         | Yes          |
| C28                                | 1   | Ceramic cap                           | 1000 pF,<br>25 V   | 10%       | 805                  | Vishay              | VJ1206A102KXXA              | Yes                     | Yes          |
| C2, C3,<br>C14,<br>C15             | 4   | Cap. Aluminum Elec.,<br>2200 μF, 25 V | 2200 μF,<br>25 V   | 20%       | 16.0 mm x<br>25.0 mm | Panasonic           | EKB00JG422F00               | Yes                     | Yes          |
| C24                                | 1   | Ceramic chip capacitor                | 470 pF,<br>50 V    | 10%       | 1206                 |                     | VJ01206470KXAA              | Yes                     | Yes          |
| C20                                | 1   | Ceramic chip capacitor                | 10 pF,<br>50 v     | 10%       | 1206                 | Vishay              | VJ01206Y100KXAA             | Yes                     | Yes          |
| C5                                 | 1   | Capacitor, Aluminum<br>Elect.         | 100 μF,<br>35 V    | 20%       |                      | Vishay              | EKB00BA310F00               | Yes                     | Yes          |
| C27                                | 1   | Ceramic chip capacitor                | 1000 pF,<br>250 V  | 20%       |                      | Murata              | DE2E3KH102MA3B              | Yes                     | Yes          |
| C4,<br>C26                         | 2   | Ceramic chip capacitor                | 1 μF,<br>50 V      | 10%       | 1206                 | Vishay              | VJ01206Y106KXXA             |                         | Yes          |
| C6                                 | 1   | Cap, Ceramic                          | 0.01 μF,<br>1000 V |           |                      | Vishay              | 225261148036                | Yes                     | Yes          |
| C7, C8                             | 2   | Cap. Aluminum Elec<br>47 μF, 25 V     | 47 μF,<br>25 V     | 20%       | 5.0 mm x<br>11.0 mm  | Vishay              | EKB00AA247F00               | Yes                     | Yes          |
| D13,<br>D15                        | 2   | Diode, rectifier                      | 800 V,<br>1 A      | NA        | DO41                 | ON<br>Semiconductor | 1N4006                      |                         | Yes          |
| D18                                | 1   | Zener Diode, SM                       | 18 V,<br>0.3 W     | NA        | SOT-23               | VISHAY              | AZ23C18                     |                         | Yes          |
| D17                                | 1   | Diode, schottky, 100 V,<br>20 amps    | 100 V,<br>20 A     | NA        | TO220AB              | ON<br>Semiconductor | MBR20100CT                  | Yes                     | Yes          |
| D2,<br>D12,<br>D14,<br>D17,<br>D20 | 5   | Diode, signal                         | 75 V,<br>100 ma    | NA        | SOT-23               | ON<br>Semiconductor | BAS19LT1                    |                         | Yes          |
| D21                                | 1   | Diode, ultra fast                     | 800 V,<br>1 A      | NA        | DO41                 | ON<br>Semiconductor | MUR180                      |                         | Yes          |
| D19                                | 1   | TRANSORB                              | 250 V              |           | 41A                  | ON<br>Semiconductor | 1.5KE250A                   |                         |              |

# Table 4. Bill of Materials for the NCP4302 Demo Board

| Designator             | Qty | Description                        | Value              | Tolerance | Footprint            | Manufacturer        | Manufacturer Part<br>Number | Substitution<br>Allowed | Lead<br>Free |
|------------------------|-----|------------------------------------|--------------------|-----------|----------------------|---------------------|-----------------------------|-------------------------|--------------|
| D8, D9,<br>D10,<br>D11 | 4   | Diode, rectifier                   | 1000 V,<br>3 A     | NA        | DO201AD              | ON<br>Semiconductor | 1N5408                      |                         | Yes          |
| F1                     | 1   | FUSE                               | 250 Vac,<br>2 Amps | NA        | 10 mm x<br>2.5 mm    | Bussman             | 1025TD2A-TR                 |                         | Yes          |
| H1                     | 2   | Shoulder Washer                    | NA                 | NA        | NA                   | Keystone            | 3049                        | Yes                     | Yes          |
| H1-H2                  | 2   | Male Header                        | N/A                | N/A       | N/A                  | Molex               | 26-60-4030                  |                         | Yes          |
| H2                     | 2   | Insulator                          | NA                 | NA        | NA                   | Keystone            | 4672                        | Yes                     | Yes          |
| J1                     | 1   | Header                             |                    |           |                      | Molex               | SD-42375-001                |                         |              |
| J2                     | 1   | PCB Connector                      | 10 A,<br>300 V     | NA        | 5.08 mm              | Weidmuller          | 171602                      | Yes                     | Yes          |
| J4                     | 1   | PCB Connector                      | 2.5 A,<br>250 V    | NA        |                      | Qualtek             | 770W-00/02                  | Yes                     | Yes          |
| L1                     | 1   | Inductor                           | 2.2 μH,<br>7.5 A   | 10%       | 0.52 mm x<br>0.39 mm | Coilcraft           | DO33316P-222                | Yes                     | Yes          |
| L5                     | 1   | Common Mode Inductor,<br>1 mH      | 1 mH,<br>3.2 A     | 30%       | NA                   | Coilcraft           | P3216-A                     | No                      | Yes          |
| Q1                     | 1   | MOSFET, 11 amp,<br>800 V, 0.8 OHMS | 800 V,<br>11 A     | NA        | TO-22131             | Infineon            | SPP11N80C3                  | Yes                     | Yes          |
| Q3                     | 1   | MOSFET, 100 V, 73 A                | 100 V,<br>73 A     | NA        | TO220AB              | IR                  | IRFB4410PBF                 | No                      | Yes          |
| Q4                     | 1   | Transistor, NPN                    | 75 V,<br>600 mA    |           | SOT-23               | ON<br>Semiconductor | MMBT2222ALT1                | No                      |              |
| R1, R3                 | 2   | Resistor, SM                       | 0.4 Ω              | 1%        | 2512                 | VISHAY              | WSL2512R4000F EK            | No                      | Yes          |
| R6                     | 1   | Resistor, SM                       | 330 kΩ,<br>1/8 W   | 1%        | 1206                 | VISHAY              | CRCW012063303F              | Yes                     | Yes          |
| R10                    | 1   | Resistor, SM                       | 7.32 kΩ,<br>1/8 W  | 1%        | 1206                 | VISHAY              | CRCW012067321F              | Yes                     | Yes          |
| R2,<br>R18             | 2   | Resistor                           | 100 k,<br>3 W      | 5%        | Axial                | VISHAY              | CPF3100k00JNE14             | Yes                     | Yes          |
| R21,<br>R22            | 2   | Resistor, SM                       | 1 kΩ,<br>1/4 W     | 5%        | 1206                 | VISHAY              | CRCW12061K00FKTA            | Yes                     | Yes          |
| R28                    | 1   | Resistor                           | 100 Ω,<br>1/4 W    | 5%        | 1206                 | VISHAY              | CRCW1206100RJNTA            | Yes                     | Yes          |
| R23                    | 2   | Resistor                           | 20 Ω,<br>1/2 W     | 5%        | Axial                | Ohmite              |                             | Yes                     | Yes          |
| R8,<br>R13             | 2   | Resistor, SM                       | 10 Ω,<br>1/4 W     | 5%        | 1206                 | VISHAY              | CRCW120610R0JNTA            | Yes                     | Yes          |
| R4                     | 1   | Resistor, SM                       | 48.7 kΩ,<br>1/4 W  | 1%        | 1206                 | VISHAY              | CRCW12064872F               | Yes                     | Yes          |
| R11                    | 1   | Resistor, SM                       | 75 Ω               | 5%        | 1206                 | VISHAY              | CRCW1206750RJNTA            | Yes                     | Yes          |
| R7                     | 1   | Resistor, SM                       | 4.7 k              | 5%        | 1206                 | VISHAY              | CRCW120647K0JNTA            | Yes                     | Yes          |
| R32                    | 1   | Resistor, SM                       | 200 k,<br>1/4 W    | 1%        | 1206                 | VISHAY              | CRCW12062003F               | Yes                     | Yes          |
| R17                    | 1   | Resistor, SM                       | 0 Ω,<br>1/4 W      | 1%        | 805                  | VISHAY              | CRCW08050R00F               | Yes                     | Yes          |

| Designator  |     |                                        |                | Tolerance | Footprint |                       | Manufacturer Part | Substitution<br>Allowed | Lead |
|-------------|-----|----------------------------------------|----------------|-----------|-----------|-----------------------|-------------------|-------------------------|------|
| ā           | Qty | Description                            | Value          | Ĕ         | ц,        | Manufacturer          | Number            | A Si                    | Free |
| R30,<br>R31 | 2   | Resistor                               | 499 k          | 5%        | Axial     | VISHAY                | RN65D4993FR36     | Yes                     | Yes  |
| R33         | 1   | Resistor, SM                           | 15 k,<br>1/4 W | 5%        | 1206      | VISHAY                | CRCW120615K3JNTA  | Yes                     | Yes  |
| R35,<br>R36 | 2   | Resistor, SM                           | 47 k,<br>1/4 W | 5%        | 1206      | VISHAY                | CRCW120647K3JNTA  | Yes                     | Yes  |
| T5          | 1   | Flyback Transformer                    | 300 μH,<br>6 A | N/A       | Custom    | Cooper<br>Electronics | CTX22-16134       | No                      |      |
| U12         | 1   | Syncronous Rectification<br>Controller | 2.5 V          | NA        | SOIC 8    | ON<br>Semiconductor   | NCP4302           | Yes                     | Yes  |
| U13         | 1   | OPTO COUPLER                           |                |           |           | NEC                   | P52561A-1         | Yes                     | Yes  |
| U9          | 1   | Flyback Controller                     | 18 V,<br>0.5 A | NA        | SOIC 8    | ON<br>Semiconductor   | NCP1230D65R2      |                         | Yes  |

## Table 4. Bill of Materials for the NCP4302 Demo Board

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative